Exploring the Potential for Forest Carbon Management in Northeastern Forests: a Research Synthesis

Bill Keeton, Jared Nunery, Emily Russell-Roy, and Charles Kerchner

University of Vermont,

Rubenstein School of Environment and Natural Resources

Carbon Dynamics Lab

University of Vermont

Exploring the Potential for Forest Carbon Management in Northeastern Forests: a Research Synthesis

- Carbon silviculture Jared Nunery MS Thesis
- Prospects for rehabilitation silviculture – Emily Russell-Roy MS Thesis
- Factors influencing carbon project financial viability – Charles Kerchner PhD Dissertation

Historic and projected trends in the voluntary carbon offset markets

Notes: Based on 87 organization responses. Source: Forest Trends' Ecosystem Marketplace. State of the Voluntary Carbon Markets 2013. "Best" Carbon Market Options for the Forest Sector in the Northeast

- → Improved Forest Management
- \rightarrow Avoided Conversion
- 1. California Compliance Market (ARB)
- 2. Verified Carbon Market (VCS)
- Reduced Impact Logging (RIL)
- Logged to Protected Forests (LtPF)
- Low to Highly Productive Forests (LtPH)
- Extended Rotation Age (ERA)
- Others to be developed

Exploring the Potential for Forest Carbon Management in Northeastern Forests: a Research Synthesis

- Carbon silviculture
- Prospects for rehabilitation silviculture
- Factors influencing carbon project financial viability

Vermont Forest Ecosystem Management Demonstration Project

Image © 2008 DigitalGlobe Image © 2008 TerraMetrics © 2008 Tele Atlas

Pointer 44°30'35.19" N 72°49'56.56" W elev 2088 ft

Streaming |||||||| 100%

Eye alt 3282 ft

Single-Tree Selection Unit

Structural Complexity Enhancement Unit

Basal Area Allocation Projected to Year 50

Ę

Stratified random sample of FIA sites

32 stands from the Northern Forest Region

14 stands from the White Mountains and western Maine

3 stands from the Green Mountain Region

15 stands from the Adirondack Region

Forest Vegetation Simulator

- An individual tree-based, spatially independent model
- Uses regional growth and yield equations
- Mortality f(density)
- Requires regeneration parameterization
- Designed for both even and uneven aged stands of mixed species composition
- Carbon estimates derived allometrically
- Wood products life cycle and carbon residency based on US Forest Service (2006)

http://www.fs.fed.us/fmsc/fvs/variants/index.shtml

Even-aged Silvicultural		Rotation Length			
Prescriptions		Short (80 years)	Long (120 years)		
	Low	 Commercial thin: implement when stand reaches stocking density above normal. Clearcut: 2005 and 2085 No legacy trees 	 Commercial thin: implement when stand reaches stocking density above normal. Clearcut: 2005 and 2125 No legacy trees. 		
Residual Structure	High	 *Whole tree harvest 1) Commercial thin: implement when stand reaches stocking density above normal. 	 *Whole tree harvest 1) Commercial thin: implement when stand reaches stocking density above normal. 		
		 2) Shelterwood: 2005 and 2085 -residual BA 60ft²/ac -15 legacy TPA, smallest diameter in removal cut 6 in *Slash left on site 	 2) Shelterwood: 2005 and 2125 -residual BA 60ft²/ac -15 legacy TPA, smallest diameter in removal cut 6 in. *Slash left on site 		
		-15 legacy TPA, smallest diameter in removal cut 6 in *Slash left on site			

Uneven-aged		Entry Cycle Length			
Silvicultural					
Prescriptions		Short (15 years)	Long (30 years)		
		Entry Cycle Length: 15 yrs	Entry Cycle Length: 30 yrs		
	Low	Residual BA \cdot 65 ft ² /ac	Residual BA · 65 ft ² /ac		
		Min DBH Class: 2 in	Min DBH Class: 2 in		
		Max DBH Class: 20 in	Max DBH Class: 20 in		
		DBH Class Width: 2 in	DBH Class Width: 2 in		
		Number of Legacy TPA: 0	Number of Legacy TPA: 0		
Residual					
Structure	High	Entry Cycle Length: 15 yrs	Entry Cycle Length: 30 yrs		
		Q-value: 1.3	Q-value: 1.3		
		Residual BA: 85 ft²/ac	Residual BA: 85 ft ² /ac		
		Min DBH Class: 2 in	Min DBH Class: 2 in		
		Max DBH Class: 24 in	Max DBH Class: 24 in		
		DBH Class Width: 2 in	DBH Class Width: 2 in		
		Number of Legacy TPA: 5	Number of Legacy TPA: 5		
		Average legacy tree diameter:	Average legacy tree diameter: 16		
		16 in	in		

Ţ

Exploring the Potential for Forest Carbon Management in Northeastern Forests: a Research Synthesis

- Carbon silviculture
- Prospects for rehabilitation silviculture
- Factors influencing carbon project financial viability

Carbon Dynamics Lab

University of Vermont

Research Question

1) What rehabilitation scenarios perform best, integrating carbon credits and timber?

2) Can carbon markets help to incentivize rehabilitation efforts on poorly stocked timberlands?

A C T I O N R**ESERVE**

California Environmental Protection Agency

Study Area

Source: Conservation Collaboratives, 2008

- Privately owned
- High-graded in the past by former landowner

- 391 hectares of former industrial timberland
- Predominantly northern hardwood species

Methods

Inventory:

- 157 prism plots (BAF 10)
- Systematic sample on grid
- Subsampling of tree heights for biomass estimates

Modeling:

- NE-FVS (Forest Vegetation Simulator)
- 100 year simulations
- Fire & Fuels Extension to calculate C
- Regeneration inputs
- Limited by model uncertainty; not spatially explicit
- Doesn't account for stem form or quality

Rehabilitation Scenarios

Carbon Markets

• Calculated credits from different offset protocols

- American Carbon Registry (ACR)
- Climate Action Reserve (CAR)

• Evaluated economic feasibility of offset project

Costs

- Project development
- Annual monitoring
- 3rd party verification
- Management costs

Revenues

- Low voluntary market (\$8.50, \$10, \$12)
- High voluntary market (\$10, \$15, \$30)
- Regulatory market (\$11, \$26, \$50)
- Timber sales (sawlog and pulpwood)

Deductions required by CAR and ACR

Deductions	American Carbon Registry	Climate Action Reserve		
Uncertainty	0%-20%	5%		
Risk of Reversal/ Buffer Pool Contribution	15%	19%		
Activity-shifting Leakage	None assumed since project must be certified	20% of the difference between actual and baseline carbon		
Market Leakage	0%-40%	20% of the difference between actual and baseline carbon		

Carbon Stock Accumulation

Total Carbon Credits

Offset NPV: High Price Assumptions

Total NPV: Offsets + Harvested wood

Take Home Messages

- Lower intensity treatments recovery had the highest NPV
- But a range of initial rehabilitation scenarios showed potential
 - » Silvicultural clearcuts
 - » Targeted thinning
 - » Passive initial recovery
- NPV for carbon scenarios yielded \$121-\$256/ha, comparable to the NPV for timber alone.
- Prices must be high enough to generate net positive revenue from offsets

Ţ

Exploring the Potential for Forest Carbon Management in Northeastern Forests: a Research Synthesis

- Carbon silviculture
- Prospects for rehabilitation silviculture
- Factors influencing carbon project financial viability

Financial Viability of Forest Carbon Projects in the Northeast

- Market price points
- Transaction Costs
- Policy Assumptions
- Economies of Scale/Property Size
- Carbon Stocking
- Other Site Characteristics

Study Sites: 25 Properties, Diverse Ownership, Size, and Management

Carbon Projections Using the Forest Vegetation Simulator: Forest C + Wood Products as per the ARB Protocol

Modeled Transaction Costs

Initial development costs	Cost	Frequency
Registry opening account fee	\$500	Once
Registry project listing fee	\$500	Once
Labor for account opening and project listing	\$1,500	Once
GIS stratification & inventory	\$15,000	Once
Growth and yield modeling and C quantification	\$30,000	Once
Travels costs and lodging for inventory	\$3,500	Once
Project Reporting Document	\$29,000	Once
Third-party verification and verification management	\$25,000	Once
Total initial development costs	\$105,000	Once
Monitoring Costs		
Desk review verification	\$3,000	Annual
Registry fee	\$500	Annual
Annual carbon accounting, modeling, monitoring & reporting	\$5,000	Annual
Inventory	\$12,000	Every 12 years
Onsite third-party verification	\$15,000	Every six years
Other fees		
Brokerage fee	3%	
Registry credit issuance fee (cents/credit)	0.02	

Multivariate Analysis of Property Level Drivers of C Value

Independent variable	Туре	Levels
% conifer	Continuous	
Site Class	Categorical	High (I-II)
		Low (III-V)
Hectares	Continuous	Numeric
% C above common practice	Continuous	Percentage
Silvicultural treatments	Categorical	No management
		Single-tree selection
		Shelterwood
		Irregular Shelterwood
		Group Selection
		Patchcut
Certification	Categorical	Yes
		No
Conservation easement	Categorical	Yes
		No
Current Use	Categorical	Yes
		No
Type of Landowner	Categorical	Land Trust/Foundation
		Private landowner
		1. ARB continues post 2020 and
Policy Assumption	Categorical	long-term monitoring
		2.ARB expires 2020 - "buy your way out"
		3.ARB expires 2020 - no long-

Cash Flows by Predictor of Financial Attractiveness

Project Viability Assessment Tool: Shelterwood Harvesting Example

	Hectares					
Scenario	200	600	1200	2400	4800	
Stocking: below Common	-\$324,863	-\$123,851	\$55,277	\$511,482	\$1,423,815	NPV to
Practice						2020
Policy A			-			
MIRR	-3%	5%	8%	11%	14%	
Stocking: >20% above	-\$245,642	\$64,633	\$530,040	\$1,460,853	\$3,322,480	
common practice						
Policy A						MIRR to
MIRR	-100%	9%	12%	15%	18%	2020
Stocking: >40% above	-\$258,153	\$27,108	\$454,989	\$1,310,756	\$3,022,278	2020
common practice						
Policy A						
MIRR	-100%	8%	12%	15%	18%	
Stocking: below Common	-\$120,724	-\$26,331	\$57,750	\$271,908	\$700,219	
Practice						
Policy B						
MIRR	-16%	5%	10%	14%	16%	
Stocking: >20% above	-\$58,883	\$136,075	\$428,508	\$1,013,375	\$2,183,108	
Common Practice						
Policy B						
MIRR	2%	15%	25%	37%	48%	
Stocking: >40% above	-\$67,286	\$110,865	\$378,089	\$912,537	\$1,981,424	-
Common Practice						
Policy B						
MIRR	3%	16%	26%	36%	47%	

Acknowledgements

- Northeastern States
 Research Cooperative
- USDA McIntire-Stennis Forest Research Program
- NRCS Conservation Innovation Grant

